
1

Copyright © 2021 SynthWorks Design Inc.
SynthWorks

by

Jim Lewis

VHDL Training Expert at SynthWorks

IEEE 1076 Working Group Chair

OSVVM Chief Architect

Jim@SynthWorks.com

VHDL-2019: Just the New Stuff

Part 3: RTL Enhancements

2

SynthWorks

Copyright © 2021 SynthWorks Design Inc.

VHDL-2019
Copyright © 2021 by SynthWorks Design Inc.
Reproduction of this entire document in whole for individual usage is permitted.
All other rights reserved.

In particular, without express written permission of SynthWorks Design Inc,
You may not alter, transform, or build upon this work,
You may not use any material from this guide in a group presentation,
tutorial, training, or classroom
You must include this page in any printed copy of this document.

This material is updated from time to time and the latest copy of this is available at
http://www.SynthWorks.com/papers

Contact Information
Jim Lewis, President
SynthWorks Design Inc
11898 SW 128th Avenue
Tigard, Oregon 97223
503-590-4787
jim@SynthWorks.com

www.SynthWorks.com

1

2

2

3

SynthWorks

Copyright © 2021 SynthWorks Design Inc.

VHDL-2019: Just the New Stuff,
Part 3: RTL Enhancements

 Agenda
 VHDL is #1
 What to Change and What not to Change
 Conditional expressions
 Conditional return
 Inferring signal and variable constraints from initial values
 All interface lists are ordered
 Allow functions to know the output vector size
 Optional semicolon at the end of interface list
 Component declaration syntax regularization
 Empty Records
 Attributes of Enumerated Types
 Range Expressions

3

4

SynthWorks

Copyright © 2021 SynthWorks Design Inc.

VHDL is the #1 FPGA Design (RTL) Language

 © Siemens 2020 https://blogs.sw.siemens.com/verificationhorizons/2020/12/16/part-6-the-
2020-wilson-research-group-functional-verification-study/

 2020 Wilson Research Functional Verification Survey

4

3

4

3

5

SynthWorks

Copyright © 2021 SynthWorks Design Inc.

What to Change & What not to Change

 Some RTL things we talked about in Part 1
 Interfaces
 Conditional Analysis
 Using Date and Time to create a hardware build time register (slide 17)

 Rules
 Don't break old code
 … at least not intentionally and not without notification
 Mistakes happen – less will happen if more people participate

 Good things that will not change
 Uniformity and Consistency
 Strong Typing
 Rich Math Capability
 Conciseness (2008)

5

6

SynthWorks

Copyright © 2021 SynthWorks Design Inc.

Strong Typing (1987)

Operation Size of Y = Size of Expression
Y <= "10101010" ; number of digits in literal
Y <= X"AA" ; 4 * (number of digits)
Y <= A ; A'Length = Length of array A
Y <= A and B ; A'Length = B'Length

W <= A > B ; Boolean
Y <= A + B ; Maximum (A'Length, B'Length)

V <= A * B ; A'Length + B'Length
Y <= A + 10 ; A'Length

 Rules are easy.
 However, some are package specific (Numeric_Std vs Fixed_Pkg)

Strong Typing = Strong error checking built into the compiler

 60-70% of the time a strong typing violation is a bug

6

5

6

4

7

SynthWorks

Copyright © 2021 SynthWorks Design Inc.

Rich Math Capability (87, 93, 96, 97, 08)

float_generic_pkg

math for integer and realstandard

float_pkg

unsigned and signednumeric_std

Generic unsigned and signed fixed pointfixed_generic_pkg

log, trig, and random functionsmath_real

ContentsPackage

math and types for complex numbersmath_complex

numeric_std_unsigned

Instance of the generic fixed packagefixed_pkg

Generic floating point

Instance of the generic float package

unsigned math for std_ulogic_vector

 Made feasible by operator overloading

VHDL is Superior at Math

std_logic family + logic operatorsstd_logic_1164

7

8

SynthWorks

Copyright © 2021 SynthWorks Design Inc.

Conciseness (2008)

Mux2_proc : process(all) . . . process(all)

 Simple sensitivity list with keyword "all"

if Cs1 and not nCs2 and Cs3 then

 Conditionals allow a bit or std_logic result

Cs1 and not nCs2 and Cs3

 Matching relational operators: ?=, ?/=, ?>, ?>=, ?<, ?<= return std_ulogic

if Addr ?= X"A5" and Cs1 and not nCs2 thenAddr ?= X"A5"

case A xor B is A xor B

 Case statements allow expressions (with globally static types)

U_DataBlk : DataBlk
port map (I1 => A and B, I2 => C, O1 => Y) ; A and B

 Port maps allow expressions on inputs

8

7

8

5

9

SynthWorks

Copyright © 2021 SynthWorks Design Inc.

Conciseness (2008)

Parity_sl <= xor Data8 ;

 Logic Reduction Operations

xor

7X"7F" = "1111111"
7D"127" = "1111111"

 Sized Literals

7X
7D

 Array - Bit Operations

Y8 <= (A8 and Asel_sl) or (B8 and Bsel_sl) ;

Y8 <= A8 + B8 + Cin_sl ; B8 + Cin_sl

(A8 and Asel_sl)

 We are not necessarily done with conciseness updates, however,

Now VHDL is more concise than Verilog / SV

It is certainly that VHDL is more self-consistent

9

10

SynthWorks

Copyright © 2021 SynthWorks Design Inc.

Conditional Expressions
 VHDL-2008 allows conditional assignments in a process

sNextState <= FLASH when (FP) else IDLE ;
. . .

vNextState := FLASH when (FP) else IDLE ;

10

 However, conditionals in declarations still required custom functions

constant MODEL_INSTANCE_NAME : string :=
ifelse(gMODEL_NAME /= "", gMODEL_NAME, "X86_Lite") ;

 VHDL-2019 implements conditional expressions

constant MODEL_INSTANCE_NAME : string :=
gMODEL_NAME when gMODEL_NAME /= "" else "X86_Lite" ;

9

10

6

11

SynthWorks

Copyright © 2021 SynthWorks Design Inc.

Conditional Expressions
 Basic Conditional Expressions. "else" is required in this form

conditional_expression ::=
expression { when condition else expression }

11

 Initializer in constant, signal, variable, and interface object declarations

constant period : time := 10 ns when gSLOW else 1 ns ;

 Actual designator in an association list (port, parameter, or generic)

generic map (
delay => 10 ns when gSLOW else 1 ns,

 Attribute specifications

attribute RAM_STYLE : string;
attribute RAM_STYLE of RAM : signal is
"block" when gLARGE_RAM else "distributed" ;

{ when condition else expression }

12

SynthWorks

Copyright © 2021 SynthWorks Design Inc.

Conditional Expressions

primary ::=
. . .
| (conditional_expression)

12

With Parentheses, any expression can have a conditional

(conditional_expression)

 A few places where we need parentheses

with MuxSel select
(A + B when Nom else C + D) when "00",
. . .

 Without parentheses "when" would belong to "with – select" = error

(A + B when Nom else C + D)

AReg <= ('0' when Reset else A) when rising_edge(Clk) ;

 With parentheses = Synchronous reset flip-flop
 Without parentheses = Asynchronous reset flip-flop

('0' when Reset else A)

11

12

7

13

SynthWorks

Copyright © 2021 SynthWorks Design Inc.

Conditional Expressions
 Extended Form: Conditional or Unaffected Expression (Limited Use)

conditional_or_unaffected_expression ::=
expression_or_unaffected { when condition else

expression_or_unaffected } [when condition]

expression_or_unaffected ::=
expression | unaffected

13

 Signal assignment with a force expression

Sig <= force A when (En) ;

Sig <= force unaffected when (not Enable) else A ;

[when condition]

 Variable assignment – subsumes conditional variable assignment

vNextState := FLASH when (FP) else IDLE ;

vNextState := FLASH when (FP) ; -- else don't changeFLASH when (FP) ;

14

SynthWorks

Copyright © 2021 SynthWorks Design Inc.

Conditional Return

14

 Conditional Return from a Function

value_return_statement ::=
[label :] return conditional_or_unaffected_expression ;

return R1 when A <= 16 else R2 when A <= 32 ;

 Returns a value.
 If unaffected or no final else, execution continues after return

R1 when A <= 16 else R2 when A <= 32 ;

 Conditional Return from a Procedure

plain_return_statement ::=
[label :] return [when condition] ;

return when A <= 32 ;

 Returns execution control.

[when condition]

when A <= 32 ;

13

14

8

15

SynthWorks

Copyright © 2021 SynthWorks Design Inc.

Inferring Signal and Variable Constraints

15

 VHDL-87 allows ports to be unconstrained – like subprogram parameters

entity E is
port(

A : in ufixed ;
B : in ufixed ;

signal Result : ufixed := A + B ;

 Deriving Signal Dimensions: VHDL-2019

: ufixed := A + B ;

constant CalcResultSize : ufixed := A + B ;
signal Result : CalcResultSize'subtype ;

 Deriving Signal Dimensions: VHDL-2008

: ufixed := A + B ;
: CalcResultSize'subtype ;

signal Result : (A + B)'subtype ;

 VHDL-202X?

: (A + B)'subtype ;

16

SynthWorks

Copyright © 2021 SynthWorks Design Inc.

All Interface Lists are Ordered

 VHDL-2019 makes Port Lists ordered

16

entity E is
port(

A : in ufixed ;
B : in A'subtype ;
Y : out ufixed(A'left + 1 downto A'right) ;

 VHDL-2008 made generic lists ordered

A'subtype ;
ufixed(A'left + 1 downto A'right) ;

 VHDL-2019 makes Parameter Lists ordered

function Mux4 (
Sel : std_logic_vector (1 downto 0) ;
A : std_logic_vector ;
B, C, D : A'subtype

) return std_logic_vector is
A'subtype ;

15

16

9

17

SynthWorks

Copyright © 2021 SynthWorks Design Inc.

Functions Know Output Subtype
 VHDL-2019 syntax adds "return_identifier of"

function_specification ::=
[pure | impure] function designator
subprogram_header
[[parameter] (formal_parameter_list)]

return [return_identifier of] type_mark[return_identifier of]

 Potential update to "to_unsigned"

function TO_UNSIGNED (ARG : NATURAL)
return result of UNRESOLVED_UNSIGNED is

begin
return to_unsigned(ARG, result'length) ;

end function TO_UNSIGNED;

result of

result'length

17

18

SynthWorks

Copyright © 2021 SynthWorks Design Inc.

Functions Know Output Subtype
 Legal Usage

constant TEN : unsigned(7 downto 0) := to_unsigned(10) ;
. . .
process
variable Y, A : unsigned(7 downto 0) ;

begin
A <= to_unsigned(10) ;
wait for 1 ns ;
Y <= A + to_unsigned(10) ;

 Subtype (type + constraints) of "return_identifier" is determinable by:
 Subtype of constant, signal, or variable declaration
 Target of an assignment (A and Y above)
 Formal if used as an actual
 Actual if used as a conversion of the formal
 Subtype of type qualifier

to_unsigned(10) ;

to_unsigned(10) ;

A + to_unsigned(10) ;

18
Works well if expression argument size = target size

17

18

10

19

SynthWorks

Copyright © 2021 SynthWorks Design Inc.

Functions Know Output Subtype

 VHDL conversion functions can only have 1 parameter

 Allows to_unsigned to be a conversion function

E_1 : E
port map (
A_slv => to_unsigned(X_Int),
to_unsigned(B_Int) => Y_slv,
. . .

 To be legal to use to_unsigned here,
 Conversion on input

 Formal port A_slv must have constraints
 IE: A_slv must be constrained

 Conversion on output
 Actual port Y_slv must have constraints
 Always TRUE since Y_slv is a signal that has constraints.

to_unsigned(X_Int),
to_unsigned(B_Int)

19

20

SynthWorks

Copyright © 2021 SynthWorks Design Inc.

Functions Know Output Subtype

 Size of to_ufixed matches the target, Y = (4 downto -3)
 Illegal since size of result is (5 downto -3)

signal A_uf : ufixed(3 downto -3) ;
signal Y_uf : ufixed(4 downto -3) ;
. . .
Y_uf <= A_uf + to_ufixed(2.5) ;

E_1 : E
port map (
A_uv => to_unsigned(X_Int) * B_uv,

 Size of to_unsigned matches size of input port A_uv.
 Illegal since size of result = A'length + B'length

(A_slv, B_slv) <= to_unsigned(X_Int) ;

 LRM explicitly makes this illegal when aggregate on LHS

20

19

20

11

21

SynthWorks

Copyright © 2021 SynthWorks Design Inc.

Regularize Component Declarations
 In component, now end by itself is allowed.

entity AxiStreamTransmitter is
port (

Clk : in std_logic ;
AxiStream : view AxiStreamTxView of AxiStreamRecType ;
TransRec : inout StreamRecType

) ;
end entity AxiStreamTransmitter ;

component AxiStreamTransmitter is
port (

Clk : in std_logic ;
AxiStream : view AxiStreamTxView of AxiStreamRecType ;
TransRec : inout StreamRecType

) ;
end component AxiStreamTransmitter ;component

 Simplifies remembering syntax and automating component generation

21

22

SynthWorks

Copyright © 2021 SynthWorks Design Inc.

Allow Optional Semicolon on Interface Lists

entity AxiStreamTransmitter is
port (

Clk : in std_logic ;
AxiStream : view AxiStreamTxView of AxiStreamRecType ;
TransRec : inout StreamRecType ;

) ;
end entity AxiStreamTransmitter ;

;

 Brings consistency with record syntax
 Necessary if conditional analysis modifies the number of ports

 Entity (and Component) Interface Lists

component AxiStreamTransmitter is
port (

Clk : in std_logic ;
AxiStream : view AxiStreamTxView of AxiStreamRecType ;
TransRec : inout StreamRecType ;

) ;
end component AxiStreamTransmitter ;

;

22

21

22

12

23

SynthWorks

Copyright © 2021 SynthWorks Design Inc.

Allow Optional Semicolon on Interface Lists
 Subprogram Interface Lists

function Mux4 (
Sel : std_logic_vector (1 downto 0) ;
A : std_logic_vector ;
B, C, D : A'Subtype ;

) return A'Subtype is
;

procedure AffirmIfEqual (
AlertLogID : AlertLogIDType ;
Received, Expected : std_logic_vector ;
Message : string := "" ;
Enable : boolean := FALSE ;

) is
;

23

24

SynthWorks

Copyright © 2021 SynthWorks Design Inc.

Empty Records
 2019 makes element declarations optional

record_type_definition ::=
record

{ element_declaration }
end record [record_type_simple_name]

element_declaration ::=
identifier_list : subtype_indication ;

type AbstractRecType is record
`if (TOOL_VENDOR = "Xilinx") then

ID : integer ;
`elsif (TOOL_VENDOR = "Intel") then

ID : std_logic_vector(7 downto 0) ;
`end if
end record AbstractRecType ;

 After conditionals, the record may end up empty

}{

24

23

24

13

25

SynthWorks

Copyright © 2021 SynthWorks Design Inc.

Attributes for Enumerated Types

P'range Range of the type T
P'reverse_range Opposite of the range of type T
P'length Length of type T (ie: number of values)

 Use with any prefix P that is appropriate for either
 An object with a scalar type or subtype T, or an alias thereof, or
 Any scalar type or subtype T.

P'base Base type of T. Only used with
other attributes

P'left Leftmost value of type T
P'right Rightmost value of type T
P'high Upper (largest) bound of type T
P'low Lower (smallest) bound of type T
P'ascending TRUE if range is ascending (aka "to")

 Extended to allow objects (subbullet 1 above)

25

26

SynthWorks

Copyright © 2021 SynthWorks Design Inc.

Range Expressions
 With Ranges we can

constant Aval : unsigned(7 downto 0) := X"4A" ;
signal A : unsigned(Aval'range) ;

signal A4 : ufixed (3 downto -3) ;

A4 <= to_ufixed(6.5, 3, -3) ; -- pass indices

A4 <= to_ufixed(6.5, A4) ; -- pass an object

 As a result, conversions in IEEE Fixed_Generic_Pkg either
 Pass the indices or
 Pass an object of the desired size
 Both to some degree are ugly

 However, a range can not be passed.

26

25

26

14

27

SynthWorks

Copyright © 2021 SynthWorks Design Inc.

Range Expressions

 A range record is implicitly defined for all scalar types

type RANGE_DIRECTION is (
ASCENDING, -- The range is ascending.
DESCENDING -- the range is descending.

);

type <unnamed_range_record> is record
Left : <scalar_type>;
Right : <scalar_type>;
Direction : RANGE_DIRECTION;

end record;

 VHDL-2019 adds range expressions

range ::=
. . .
| range_expression

 Type = the implicitly defined range record for the indices
 Can be used anywhere a range is used

27

28

SynthWorks

Copyright © 2021 SynthWorks Design Inc.

Range Expressions

type <unnamed_INTEGER_range_record> is record
Left : INTEGER;
Right : INTEGER;
Direction : RANGE_DIRECTION;

end record;

 For type integer, a range record type is implicitly defined:

subtype INTEGER_range_record is integer'range'record ;

 We access the implicitly defined range record type for integer by:

constant INTEGER_RANGE_1 : INTEGER_range_record := (
Left => -2**63,
Right => 2**63 – 1,
Direction => ASCENDING) ;

constant INTEGER_RANGE_2 : INTEGER_range_record :=
integer'range'value ;

 For VHDL-2019, the following are equivalent

28

27

28

15

29

SynthWorks

Copyright © 2021 SynthWorks Design Inc.

Range Expressions
 Back to ufixed:

signal A4 : ufixed (3 downto -3) ;

constant B4_RANGE : INTEGER_range_record := (
Left => 3,
Right => -3,
Direction => DESCENDING) ;

signal B4 : ufixed (B4_RANGE) ;

 With range expressions we can also write:

B4 <= to_ufixed(6.5, B4_RANGE) ;

 To_ufixed can be overloaded for INTEGER_range_record

signal A4, B4 : ufixed (B4_RANGE) ;
signal Y5 : ufixed (B4_RANGE + B4_RANGE) ;

 If we defined "+" for INTEGER_range_record, then

29

30

SynthWorks

Copyright © 2021 SynthWorks Design Inc.

Trying Out VHDL-2019

git clone --recursive https://gitlab.com/synthworks/VHDL_2019

• Clone the VHDL-2019 presentation repositories:

• Build the OSVVM Libraries

build ../OsvvmLibraries

cd VHDL_2019/_sim
source ../OsvvmLibraries/Scripts/StartUp.tcl

• In RivieraPRO, cd to sim directory and initialize scripting environment

• See Documentation/Scripts_user_guide.pdf for Aldec ActiveHDL

• Run a test

build ../ConditionalExpressions
build ../InterfaceLists
build ../ConversionPkg
build ../EmptyRecord
build ../RangeExpressions

30

29

30

16

31

SynthWorks

Copyright © 2021 SynthWorks Design Inc.

IEEE VHDL Working Group

 We seek volunteers experienced in one or more:
 VHDL design or verification
 Language design (VHDL, Ada)
 Programming Language Interfaces
 Digital design experience (DSP, Floating-Point, …)
 Latex
 Commercial, University, or retired

 Participation
 Individual, volunteer participation based.
 No fees or membership required – except for officers
 Meetings are on-line, on GitLab issues, on TWIKI, and email

 We seek input for 202X
 Please share with us 10 capabilities you would like to see
 https://gitlab.com/IEEE-P1076/VHDL-Issues/-/issues

 Please search the list before adding new items
 If your idea is already there, add a comment "me too"

31

32

SynthWorks

Copyright © 2021 SynthWorks Design Inc.

Summary

 It should be clear that the VHDL user community wants these features
 I am happy to see that Aldec is well into their implementation
 Hopefully, others will be soon

 VHDL-2019 was
 Requested by users
 Ranked by users
 Scrutinized by users
 Written by Users
 Balloted by the VHDL community

 Be sure to talk to your simulation vendors about VHDL-2019

 VHDL-202X work is already in process. Join us.
 See: http://www.eda-twiki.org/cgi-bin/view.cgi/P1076/WebHome
 See: https://ieee-p1076.gitlab.io/About/index.html

32

31

32

17

33

SynthWorks

Copyright © 2021 SynthWorks Design Inc.

SynthWorks VHDL Classes

VHDL Coding for Synthesis 4 Days / 8 on-line sessions
http://www.synthworks.com/vhdl_rtl_synthesis.htm
Learn VHDL RTL (FPGA and ASIC) coding styles, methodologies, design
techniques, problem solving techniques, and advanced language
constructs to produce better, faster, and smaller logic.

Advanced VHDL Testbenches and Verification 5 days / 10 on-line sessions
http://www.synthworks.com/vhdl_testbench_verification.htm
Learn the latest VHDL verification techniques including transaction based
modeling, self-checking, scoreboards, memory modeling, functional coverage,
directed, algorithmic, constrained random, and intelligent testbench test
generation. Create a VHDL testbench environment that is competitive with other
verification languages, such as SystemVerilog or 'e'. Our techniques work on
VHDL simulators without additional licenses and are accessible to RTL engineers.

SynthWorksSynthWorks

Comprehensive VHDL Introduction 4 Days / 9 on-line sessions
https://synthworks.com/comprehensive_vhdl_introduction.htm
Learn VHDL for FPGA and ASIC design and verification. Class covers
syntax, RTL coding, and testbenches. Class comes with your choice of
an Altera or Xilinx FPGA board to make sure you understand the whole
process from simulation to chip

33

